UCI开发出混合人机框架构建更智能的人工智能
论文作者之一、UCI认知科学教授Mark Steyvers表示:“人类和机器算法优劣势互补。每种算法都使用不同的信息来源和策略做出预测和决策。经验证明,且理论分析也表明,即使人类的准确度略低于人工智能的准确度,人类也可以改进人工智能的预测,反之亦然。这种准确度高于结合两个人或两种人工智能算法的准确度。”
为了测试该框架,研究人员进行了一项图像分类实验,其中人类参与者和计算机算法分别工作,以正确识别动物和日常用品(椅子、瓶子、自行车、卡车)的扭曲图片。人类参与者将对每个图像识别准确性的信心分为低、中或高,而机器分类器则生成一个连续的分数。结果显示,人类和人工智能算法对于不同图像的置信度存在较大差异。
论文共同作者、UCI名誉校长、计算机科学教授Padhraic Smyth也表示:“在某些情况下,人类参与者对包含椅子的特定图片等表现出超高信心,而人工智能算法对此就无法确定。同样,对于其他图像,人工智能算法能够自信地为显示对象提供标签,而人类参与者无法确定扭曲图片中是否包含可识别的对象。”
当使用新贝叶斯(Bayesian)框架将两种预测和置信度得分结合起来时,混合模型比人类或机器预测单独使用的性能更好。
Smyth表示:“虽然过去的研究已经证明,结合机器预测或结合人类预测可实现‘群体智慧’,从而在展示结合人类和机器预测的潜力方面开辟了一个新方向,并为人类与人工智能协作提供新的和改进方法。”
其他合著者包括UCI认知科学研究生Heliodoro Tejada和UCI计算机科学博士Gavin Kerrigan。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 931614094@qq.com 举报,一经查实,本站将立刻删除。